When to Sacrifice Prediction Accuracy : Machine Learning or MNL Choice Model for Assortment Planning
Year of publication: |
2022
|
---|---|
Authors: | Peng, Zhenkang ; Rong, Ying ; Zhu, Tianning |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Theorie | Theory | Konsumentenverhalten | Consumer behaviour |
Extent: | 1 Online-Ressource (30 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments December 10, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4298996 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Risks of observable and unobservable biases in artificial intelligence predicting consumer choice
Teleaba, Florian, (2021)
-
An Interpretable Machine Learning Approach to Predicting Customer Behavior on JD.Com
Iravani, Foad, (2020)
-
Visual saliency modeling with deep learning : a comprehensive review
Abraham, Shilpa Elsa, (2023)
- More ...
-
Got organic milk? : joint inventory model with supply uncertainties and partial substitution
Jeon, Donggyu, (2021)
-
Heuristics for Perishable Inventory Systems Under Mixture Issuance Policies
Ding, Jingying, (2023)
-
Heuristics for perishable inventory systems under mixture issuance policies
Ding, Jingying, (2024)
- More ...