An adaptation of Random Forest to estimate convex non-parametric production technologies : an empirical illustration of efficiency measurement in education
| Year of publication: |
2025
|
|---|---|
| Authors: | España, Victor J. ; Aparicio, Juan ; Barber, Xavier |
| Published in: |
International transactions in operational research : a journal of the International Federation of Operational Research Societies. - Oxford : Wiley-Blackwell, ISSN 1475-3995, ZDB-ID 2019815-2. - Vol. 32.2025, 5, p. 2523-2546
|
| Subject: | data envelopment analysis | importance of variables | machine learning | prediction | Random Forest | Data-Envelopment-Analyse | Data envelopment analysis | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | Technische Effizienz | Technical efficiency | Prognoseverfahren | Forecasting model | Forstwirtschaft | Forestry | Schätzung | Estimation | Nichtparametrisches Verfahren | Nonparametric statistics |
-
Improving predictions of technical inefficiency
Amsler, Christine Elaine, (2024)
-
Estimating non-overfitted convex production technologies : a stochastic machine learning approach
Guillen, Maria D., (2025)
-
Guillen, María D., (2024)
- More ...
-
Estimating production functions through additive models based on regression splines
España, Victor J., (2024)
-
Estimating production technologies using multi-output adaptive constrained enveloping splines
España, Victor J., (2025)
-
Guillen, María D., (2024)
- More ...