Improving the predictive accuracy of production frontier models for efficiency measurement using machine learning : the LSB-MAFS method
Year of publication: |
2024
|
---|---|
Authors: | Guillen, María D. ; Aparicio, Juan ; Zofío, José L. ; España, Victor J. |
Published in: |
Computers & operations research : an international journal. - Amsterdam [u.a.] : Elsevier, ISSN 0305-0548, ZDB-ID 1499736-8. - Vol. 171.2024, Art.-No. 106793, p. 1-19
|
Subject: | Production frontiers | Least squares boosting (LSB) | Multivariate Adaptive Frontier Splines (MAFS) | Machine Learning | Prediction Accuracy | Data Envelopment Analysis | Künstliche Intelligenz | Artificial intelligence | Data-Envelopment-Analyse | Data envelopment analysis | Technische Effizienz | Technical efficiency | Prognoseverfahren | Forecasting model | Theorie | Theory | Produktionsfunktion | Production function | Schätzung | Estimation |
-
España, Victor J., (2025)
-
Improving predictions of technical inefficiency
Amsler, Christine Elaine, (2024)
-
A graphically based machine learning approach to predict secondary schools performance in Tunisia
Rebai, Sonia, (2020)
- More ...
-
Estimating production functions through additive models based on regression splines
España, Victor J., (2024)
-
España, Victor J., (2025)
-
Aparicio, Juan, (2021)
- More ...