Copula stochastic volatility in oil returns : approximate Bayesian computation with volatility prediction
Year of publication: |
2020
|
---|---|
Authors: | Virbickaitė, Audronė ; Ausín, M. Concepción ; Galeano, Pedro |
Published in: |
Energy economics. - Amsterdam : Elsevier, ISSN 0140-9883, ZDB-ID 795279-X. - Vol. 92.2020, p. 1-15
|
Subject: | Realized volatility | ABC | Bayesian inference | Energy commodity returns | MCMC | Volatilität | Volatility | Bayes-Statistik | Kapitaleinkommen | Capital income | Prognoseverfahren | Forecasting model | Theorie | Theory | Stochastischer Prozess | Stochastic process | Multivariate Verteilung | Multivariate distribution | Markov-Kette | Markov chain | Monte-Carlo-Simulation | Monte Carlo simulation | ARCH-Modell | ARCH model |
-
Hachicha, Fatma, (2022)
-
Bayesian quantile forecasting via the realized hysteretic GARCH model
Chen, Cathy W. S., (2022)
-
Li, Chenxing, (2024)
- More ...
-
Particle learning for Bayesian semi-parametric stochastic volatility model
Virbickaitė, Audronė, (2019)
-
Ausín, M. Concepción, (2014)
-
Galeano, Pedro, (2010)
- More ...