Enhancing predictive analytics for anti-phishing by exploiting website genre information
| Year of publication: |
2015
|
|---|---|
| Authors: | Abbasi, Ahmed ; Zahedi, Fatemeh Mariam ; Zeng, Daniel ; Chen, Yan ; Chen, Hsinchun |
| Published in: |
Journal of management information systems : JMIS. - Philadelphia, PA : Taylor & Francis Group, LLC, ISSN 0742-1222, ZDB-ID 883127-0. - Vol. 31.2014/2015, 4, p. 109-157
|
| Subject: | design science | data mining | phishing websites | genre theory | Internet fraud | website genres | credibility assessment | phishing | Website | Data Mining | Data mining | Internet | Online-Marketing | Internet marketing |
-
Performing web analytics with Google Analytics 4 : a platform review
McGuirk, Mike, (2023)
-
Maintz, Julia, (2019)
-
Web scraping based online consumer price index: The “IPC Online” case
Uriarte, Juan Ignacio, (2019)
- More ...
-
Chen, Yan, (2021)
-
Ontology-based intelligent interface personalization for protection against phishing attacks
Zahedi, Fatemeh Mariam, (2024)
-
Data avatars : a theory-guided design and assessment for multidimensional data visualization
Pflughoeft, Kurt A., (2024)
- More ...