Forecasting the short-term demand for elasticity : do neural networks stand a better chance ?
Year of publication: |
2000
|
---|---|
Authors: | Darbellay, Georges A. ; Slama, Marek |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 16.2000, 1, p. 71-83
|
Subject: | Energieprognose | Energy forecast | Zeitreihenanalyse | Time series analysis | Neuronale Netze | Neural networks | Theorie | Theory | Tschechien | Czech Republic | ARMA-Modell | ARMA model | 1994-1995 |
-
A hybrid machine learning model for forecasting a billing period’s peak electric load days
Saxena, Harshit, (2019)
-
A comparison of univariate methods for forecasting electricity demand up to a day ahead
Taylor, James W., (2006)
-
Hlaváček, Marek, (2005)
- More ...
-
Forecasting the short-term demand for electricity: Do neural networks stand a better chance?
Darbellay, Georges A., (2000)
-
An estimator of the mutual information based on a criterion for conditional independence
Darbellay, Georges A., (1999)
-
Could nonlinear dynamics contribute to intra-day risk management?
Darbellay, Georges A., (1997)
- More ...