Interpretable Machine Learning for Creditor Recovery Rates
Year of publication: |
2022
|
---|---|
Authors: | Nazemi, Abdolreza ; Rauch, Jonas ; Fabozzi, Frank J. |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Kreditrisiko | Credit risk | Insolvenz | Insolvency |
-
Intertemporal Defaulted Bond Recoveries Prediction Via Machine Learning
Nazemi, Abdolreza, (2018)
-
Machine Learning Loss Given Default for Corporate Debt
Zhao, Xinlei Shelly, (2022)
-
Explainable AI for credit assessment in banks
Lange, Petter Eilif de, (2022)
- More ...
-
Incorporating Financial News for Forecasting Bitcoin Prices Based on Long Short-Term Memory Networks
Jakubik, Johannes, (2021)
-
High-dimensional macroeconomic stress testing of corporate recovery rate
Nazemi, Abdolreza, (2024)
-
Intertemporal defaulted bond recoveries prediction via machine learning
Nazemi, Abdolreza, (2022)
- More ...