Machine learning models and cost-sensitive decision trees for bond rating prediction
Year of publication: |
2020
|
---|---|
Authors: | Jabeur, Sami Ben ; Sadaaoui, Amir ; Sghaier, Asma ; Aloui, Riadh |
Published in: |
Journal of the Operational Research Society. - London : Taylor and Francis, ISSN 1476-9360, ZDB-ID 2007775-0. - Vol. 71.2020, 8, p. 1161-1179
|
Subject: | cost-sensitive decision tree | deep neural networks | machine learning | Sovereign bond ratings | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Entscheidungsbaum | Decision tree | Kreditwürdigkeit | Credit rating | Prognoseverfahren | Forecasting model | Öffentliche Anleihe | Public bond | Anleihe | Bond | Theorie | Theory |
-
El Khair Ghoujdam, Mousaab, (2024)
-
EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks
Kristóf, Tamás, (2022)
-
Is artificial intelligence really more accurate in predicting bankruptcy?
Letkovský, Stanislav, (2023)
- More ...
-
Sghaier, Asma, (2018)
-
The interactions between the lending rates, deposit rates and money market rates
Mansour, Manel, (2019)
-
Aloui, Riadh, (2022)
- More ...