Pooling and winsorizing machine learning forecasts to predict stock returns with high-dimensional data
Year of publication: |
2024
|
---|---|
Authors: | Mekelburg, Erik ; Strauss, Jack |
Subject: | Ensembles | Machine learning | Out-of-sample predictability | Pooling | Return predictability | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Prognose | Forecast | Kapitalmarktrendite | Capital market returns | Neuronale Netze | Neural networks |
-
Forecasting relative returns for S&P 500 stocks using machine learning
Htet Htet Htun, (2024)
-
Deep learning, predictability, and optimal portfolio returns
Babiak, Mykola, (2020)
-
Yae, James, (2023)
- More ...
-
Unlocking the black box of sentiment and cryptocurrency : what, which, why, when and how?
Bennett, Donyetta, (2024)
-
BeFi meets DeFi : a behavioral finance approach to decentralized finance asset pricing
Bennett, Donyetta, (2023)
-
The Economic Gains to Colorado of Amendment 66
Strauss, Jack, (2013)
- More ...