Spurious patterns in Google Trends data : an analysis of the effects on tourism demand forecasting in Germany
Year of publication: |
2019
|
---|---|
Authors: | Bokelmann, Björn ; Lessmann, Stefan |
Published in: |
Tourism management : research, policies, practice. - Amsterdam [u.a.] : Elsevier Science, ISSN 0261-5177, ZDB-ID 802245-8. - Vol. 75.2019, p. 1-12
|
Subject: | Forecasting | Tourism demand | Big data analytics | Search query data | Google trends | Prognoseverfahren | Forecasting model | Tourismus | Tourism | Suchmaschine | Search engine | Big Data | Big data | Deutschland | Germany | Zeitreihenanalyse | Time series analysis | Nachfrage | Demand | Data Mining | Data mining |
-
Forecasting tourism demand with composite search index
Li, Xin, (2017)
-
Forecasting destination weekly hotel occupancy with big data
Pan, Bing, (2017)
-
Predicting hotel demand using destination marketing organization's web traffic data
Yang, Yang, (2014)
- More ...
-
Improving uplift model evaluation on randomized controlled trial data
Bokelmann, Björn, (2024)
-
Usage Continuance in Software-as-a-Service
Baumann, Elias, (2020)
-
Forex exchange rate forecasting using deep recurrent neural networks
Dautel, Alexander Jakob, (2020)
- More ...